131 research outputs found

    Social Media Use by College Students and Teachers: An Application of UTAUT2

    Get PDF
    Social media has been increasingly used in education to facilitate innovative instruction. Mainland Chinese people could not use popular social media platforms such as FacebookTM because the government blocked them. Little research studied social media use by Mainland Chinese students and teachers in the isolated network environment. This quantitative study utilized social constructivism, connectivism, and the unified theory of acceptance and use of technology (UTAUT2) as the theoretical base. Research questions explored the influence of 6 UTAUT2 predictors on social media use intention and the influence of social media use intention on social media use behavior. The study used a convenience sample of 197 undergraduate students and 54 full-time faculty from 2 public science and technology universities in Guangzhou, Guangdong province, Mainland China. Survey data were analyzed using descriptive statistics, simple regression, multiple regression, and moderation analysis. The findings showed that performance expectancy, effort expectancy, social influence, facilitating conditions, hedonic motivation, and habit significantly influenced social media use intention, and social media use intention significantly influenced social media use behavior. Age moderated the relationship between facilitating conditions and social media use intention, and gender moderated the relationship between habit and social media use intention. The findings might be used to promote positive social change by providing insights of social media use by Chinese students and teachers for university administrators, government, and social media platform designers. Better understanding might facilitate adoption of social media in education and therefore improve teaching and learning for Mainland Chinese students

    Two-Way Training for Discriminatory Channel Estimation in Wireless MIMO Systems

    Full text link
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang et al where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace based on the transmitter's knowledge of LR's channel in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and non-reciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. {For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals,} we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and hence the data detection performances at LR and UR.Comment: 1

    Time-Hopping Multiple-Access for Backscatter Interference Networks

    Get PDF
    Future Internet-of-Things (IoT) is expected to wirelessly connect tens of billions of low-complexity devices. Extending the finite battery life of massive number of IoT devices is a crucial challenge. The ultra-low-power backscatter communications (BackCom) with the inherent feature of RF energy harvesting is a promising technology for tackling this challenge. Moreover, many future IoT applications will require the deployment of dense IoT devices, which induces strong interference for wireless information transfer (IT). To tackle these challenges, in this paper, we propose the design of a novel multiple-access scheme based on time-hopping spread-spectrum (TH-SS) to simultaneously suppress interference and enable both two-way wireless IT and one-way wireless energy transfer (ET) in coexisting backscatter reader-tag links. The performance analysis of the BackCom network is presented, including the bit-error rates for forward and backward IT and the expected energytransfer rate for forward ET, which account for non-coherent and coherent detection at tags and readers, and energy harvesting at tags, respectively. Our analysis demonstrates a tradeoff between energy harvesting and interference performance. Thus, system parameters need to be chosen carefully to satisfy given BackCom system performance requirement.ARC Discovery Projects Grant DP14010113

    Two-way training for discriminatory channel estimation in wireless MIMO systems

    No full text
    This work examines the use of two-way training to efficiently discriminate the channel estimation performances at a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. This work improves upon the original discriminatory channel estimation (DCE) scheme proposed by Chang where multiple stages of feedback and retraining were used. While most studies on physical layer secrecy are under the information-theoretic framework and focus directly on the data transmission phase, studies on DCE focus on the training phase and aim to provide a practical signal processing technique to discriminate between the channel estimation performances (and, thus, the effective received signal qualities) at LR and UR. A key feature of DCE designs is the insertion of artificial noise (AN) in the training signal to degrade the channel estimation performance at UR. To do so, AN must be placed in a carefully chosen subspace, based on the transmitter's knowledge of LR's channel, in order to minimize its effect on LR. In this paper, we adopt the idea of two-way training that allows both the transmitter and LR to send training signals to facilitate channel estimation at both ends. Both reciprocal and nonreciprocal channels are considered and a two-way DCE scheme is proposed for each scenario. For mathematical tractability, we assume that all terminals employ the linear minimum mean square error criterion for channel estimation. Based on the mean square error (MSE) of the channel estimates at all terminals, we formulate and solve an optimization problem where the optimal power allocation between the training signal and AN is found by minimizing the MSE of LR's channel estimate subject to a constraint on the MSE achievable at UR. Numerical results show that the proposed DCE schemes can effectively discriminate between the channel estimation and, hence, the data detection performances at LR and UR.This work was supported in part by the National Science Council, Taiwan, by Grant NSC 100-2628-E-007-025-MY3 and Grant NSC 101-2218-E-011-043, and in part by the Australian Research Council's Discovery Projects Funding Scheme (Project no.DP110102548)

    The Multiscale Conformation Evolution of the Financial Time Series

    Get PDF
    Fluctuations of the nonlinear time series are driven by the traverses of multiscale conformations from one state to another. Aiming to characterize the evolution of multiscale conformations with changes in time and frequency domains, we present an algorithm that combines the wavelet transform and the complex network. Based on defining the multiscale conformation using a set of fluctuation states from different frequency components at each time point rather than the single observable value, we construct the conformational evolution complex network. To illustrate, using data of Shanghai’s composition index with daily frequency from 1991 to 2014 as an example, we find that a few major conformations are the main contributors of evolution progress, the whole conformational evolution network has a clustering effect, and there is a turning point when the size of the chain of multiscale conformations is 14. This work presents a refined perspective into underlying fluctuation features of financial markets

    FacetClumps: A Facet-based Molecular Clump Detection Algorithm

    Full text link
    A comprehensive understanding of molecular clumps is essential for investigating star formation. We present an algorithm for molecular clump detection, called FacetClumps. This algorithm uses a morphological approach to extract signal regions from the original data. The Gaussian Facet model is employed to fit the signal regions, which enhances the resistance to noise and the stability of the algorithm in diverse overlapping areas. The introduction of the extremum determination theorem of multivariate functions offers theoretical guidance for automatically locating clump centers. To guarantee that each clump is continuous, the signal regions are segmented into local regions based on gradient, and then the local regions are clustered into the clump centers based on connectivity and minimum distance to identify the regional information of each clump. Experiments conducted with both simulated and synthetic data demonstrate that FacetClumps exhibits great recall and precision rates, small location error and flux loss, a high consistency between the region of detected clump and that of simulated clump, and is generally stable in various environments. Notably, the recall rate of FacetClumps in the synthetic data, which comprises 13CO^{13}CO (J=10J = 1-0) emission line of the MWISP within 11.7l13.411.7^{\circ} \leq l \leq 13.4^{\circ}, 0.22b1.050.22^{\circ} \leq b \leq 1.05^{\circ} and 5 km s1^{-1} v\leq v \leq 35 km s1^{-1} and simulated clumps, reaches 90.2\%. Additionally, FacetClumps demonstrates satisfactory performance when applied to observational data.Comment: 27pages,28figure
    corecore